
University of Groningen
Exam Numerical Mathematics 1, June 19, 2017

Use of a simple calculator is allowed. All answers need to be motivated.
In front of each question you find a weight, which gives the number of tenths that can be gained
in the final mark. The maximum total score for this exam is 5.4 points.

Exercise 1

(a) Let n+ 1 points (xi, yi), i = 0, 1, ..., n, be given with distinct nodes xi. A polynomial P is
called interpolating if P (xi) = yi, i = 0, 1, ..., n.

(i) 4 Give a complete description of the Lagrange interpolation formula, and explain why
this formula provides an interpolating polynomial P of degree ≤ n.

The Lagrange interpolation formula reads

P (x) =
n∑

k=0

ykϕk(x),

where the functions ϕk are the Lagrange characteristic polynomials defined as

ϕk(x) =
n∏

j=0
j 6=k

x− xj
xk − xj

.

One easily verifies that the Lagrange characteristic polynomials ϕk have degree n and satisfy
ϕk(xj) = δjk. It follows that P is a polynomial of degree ≤ n satisfying

P (xj) =

n∑
k=0

ykϕk(xj) =

n∑
k=0

ykδjk = yj (jk = 0, 1, ..., n).

(ii) 2 Show that there cannot exist another interpolating polynomial P of degree ≤ n.

If P and Q are two interpolating polynomials of degree ≤ n, their difference R = P − Q
satisfies R(xj) = 0 for all j = 0, 1, ..., n. But then R is a polynomial of degree ≤ n with at
least n+ 1 zeros. This is only possible if R is the zero function, proving that P = Q.

(iii) 4 Suppose that all the nodes xi lie in an interval I = [a, b], and that we are interested
in evaluating the interpolant P at arbitrary x ∈ I. How is the corresponding Lebesgue
constant Λ defined, and what are the implications if its value is large (say, Λ = 105) ?

The Lebesgue constant Λ is defined as

Λ = max
x∈I

n∑
k=0

|ϕk(x)|.

For a given set of nodes and interval I, it is the smallest possible constant in the stability
bound that estimates the effect of perturbations of the values yi on the interpolated value
P (x),

|P̃ (x)− P (x)| ≤ Λ ·max
i
|ỹi − yi| for all x ∈ I.

It can therefore be regarded as the condition number of the interpolation problem. If the
value of Λ is large, it follows that small perturbations in the values yi can have a large effect
on the interpolated value P (x) for some x ∈ I.



(b) For a smooth function f on the interval [0, 1] we approximate its (one-sided) derivative
f ′(0) by P ′(0), where P is the polynomial (of degree ≤ 2) that interpolates f at the nodes
x0 = 0, x1 = h and x2 = 2h.

(i) 1 Show that P is given by

P (x) =
f(0)

2h2
(x− h)(x− 2h)− f(h)

h2
x(x− 2h) +

f(2h)

2h2
x(x− h).

This follows immediately from the Lagrange interpolation formula since for the given nodes
the Lagrange characteristic polynomials are

ϕ0(x) =
x− x1
x0 − x1

· x− x2
x0 − x2

=
x− h
0− h

· x− 2h

0− 2h
=

(x− h)(x− 2h)

2h2

ϕ1(x) =
x− x0
x1 − x0

· x− x2
x1 − x2

=
x− 0

h− 0
· x− 2h

h− 2h
=
x(x− 2h)

−h2

ϕ2(x) =
x− x0
x2 − x0

· x− x1
x2 − x1

=
x− 0

2h− 0
· x− h

2h− h
=
x(x− h)

2h2

(ii) 1 Use the above explicit expression for P (x) to show that

P ′(0) =
1

2h
[−3f(0) + 4f(h)− f(2h)] .

We have

ϕ′0(x) =
2x− 3h

2h2
, ϕ′1(x) =

2x− 2h

−h2
, ϕ′2(x) =

2x− h
2h2

implying

ϕ′0(0) =
−3

2h
, ϕ′1(0) =

2

h
, ϕ′2(0) =

−1

2h
.

The expression for P ′(0) immediately follows from

P ′(0) = f(0)ϕ′0(0) + f(h)ϕ′1(0) + f(2h)ϕ′2(0).

(iii) 3 Show that P ′(0) is a second order approximation of f ′(0) (with respect to h).

Taylor expansion of 4f(h) and f(2h) yields

4f(h) = 4f(0) + 4hf ′(0) + 2h2f ′′(0) +O(h3)

f(2h) = f(0) + 2hf ′(0) + 2h2f ′′(0) +O(h3)

Substitution of these Taylor expansions into the expression for P ′(0) shows that

P ′(0) =
2hf ′(0) +O(h3)

2h
= f ′(0) +O(h2).



Exercise 2

(a) Consider a system of nonlinear equations f(x) = 0, where f : Rn → Rn is smooth.

(i) 4 Derive Newton’s method for the above system, and explain briefly how this method
works.
Newton’s method is based on a linearization (first order Taylor expansion) of f about the
last iterate x(k),

f(x) ≈ f(x(k)) + f ′(x(k))(x− x(k)),

where f ′(x(k)) is the Jacobian matrix of f with entries ∂fi
∂xj

evaluated at x = x(k). The next

iterate x(k+1) is defined as the vector x for which the linearization is zero, i.e.,

f(x(k)) + f ′(x(k))(x(k+1) − x(k)) = 0.

In each iteration step, the method therefore requires solving the system of linear equations

f ′(x(k))δ(k) = −f(x(k)),

followed by setting x(k+1) = x(k) + δ(k).

(ii) 3 Consider the above system with n = 2 and

f1(x1, x2) = x1 + x22 + sin(x1x2)− 3, f2(x1, x2) = x1 + x2 + cos(x1x2)− 4.

Starting from the initial guess x(0) = (π, 0)T , show that Newton’s method converges
to the root α = (3, 0)T in a single step.

The Jacobian matrix is given by

f ′(x) =

[
1 + x2 cos(x1x2) 2x2 + x1 cos(x1x2)
1− x2 sin(x1x2) 1− x1 sin(x1x2)

]
For the first Newton step, starting from x(0) = (π, 0)T , the linear system f ′(x(0))δ(0) =
−f(x(0)) has the form [

1 π
1 1

]
· δ(0) =

[
−(π − 3)
−(π − 3)

]
,

which has the solution

δ(0) =

[
3− π

0

]
,

so that

x(1) = x(0) + δ(0) =

[
π
0

]
+

[
3− π

0

]
=

[
3
0

]
.

Note that α = (3, 0)T is indeed a root of f(x) = 0.



(b) Consider the fixed point iteration x(k+1) = φ(x(k)) with x(0) given and φ(x) = 1
3x(4+x−2x2).

(i) 1 Determine all fixed points α of φ.

We have

φ(x) = x ⇐⇒
1

3
x(4 + x− 2x2) = x ⇐⇒

x = 0 ∨ 4 + x− 2x2 = 3 ⇐⇒
x = 0 ∨ 1 + x− 2x2 = 0 ⇐⇒
x = 0 ∨ (1− x)(1 + 2x) = 0 ⇐⇒
x = 0 ∨ x = 1 ∨ x = −1/2.

The fixed points are therefore α = 0, α = 1 and α = −1/2.

(ii) 4 For each of these fixed points α, check whether {x(k)} converges to α if x(0) is
chosen sufficiently close to α. If that occurs, also determine the order of convergence.

Note that

φ′(x) =
1

3
(4 + x− 2x2) +

1

3
x(1− 4x) =

1

3
(4 + 2x− 6x2).

We conclude that

• α = 0: no convergence since |φ′(0)| = 4
3 > 1

• α = 1: convergence of order at least 2 since φ′(1) = 0; the order is exactly 2 since
φ′′(1) = −10/3 6= 0

• α = −1/2: convergence of order 1 since φ′(−1/2) = 1/2 ∈ (0, 1)



Exercise 3

(a) Consider the system of linear equations Ax = b, where

A =

 1 1 1
1 2 2
1 2 3

 , b =

 6
9
10

 .
(i) 4 Determine the Cholesky factorization and LU factorization of A.

The Cholesky factorization A = RTR and LU factorization A = LU are the same in this
case, namely  1 1 1

1 2 2
1 2 3

 =

 1 0 0
1 1 0
1 1 1

 1 1 1
0 1 1
0 0 1


(ii) 3 Use one of these factorizations to solve Ax = b.

We solve Ax = b by first solving Ly = b for y and then solving Rx = y for x.
Solving Ly = b with the forward substitution method we find

y =

 6
3
1

 .
Subsequently solving Rx = y with the backward substitution method we find

x =

 3
2
1

 .



(b) For solving a general linear system Ax = b we consider iterative methods of the form

Px(k+1) = (P −A)x(k) + b,

where P is a nonsingular preconditioner of A.

(i) 1 Determine the iteration matrix B and show that the error e(k) = x(k) − x satisfies
e(k+1) = Be(k). When does the method converge?

The iteration method can be rewritten as

x(k+1) = P−1(P −A)x(k) + P−1b = Bx(k) + P−1b, (1)

where the iteration matrix is given by

B = P−1(P −A) = I − P−1A.

Note that the solution x of Ax = b obviously satisfies Px = (P −A)x+ b, so we also have

x = Bx+ P−1b.

Subtracting the latter relation from (1) we see that

e(k+1) = Be(k).

The method converges if the spectral radius ρ(B) satisfies ρ(B) < 1.

(ii) 5 What is the name of the iterative method that corresponds to the preconditioner
P = D = diag(a11, a22, ..., ann)? Show that this method converges if A is strictly di-
agonally dominant by row.

This is Jacobi’s method. To show that it converges under the mentioned condition we write
A = D +N , where N is the non-diagonal part of A. The iteration matrix is given by

B = −D−1N =


0 −a12/a11 . . . −a1n/a11

−a21/a22 0 −a2n/a22
...

. . .
...

−an1/ann −an2/ann . . . 0

 .
In the following we will show that ρ(B) < 1. It follows from the strict diagonal dominance
of A that the matrix B satisfies

n∑
j=1

|bij | < 1 (for all i = 1, 2, ..., n).

Let λ be an arbitrary eigenvalue of B and v a corresponding eigenvector. Then we have

n∑
j=1

bijvj = λvi (for all i = 1, 2, ..., n).

We scale this eigenvector such that maxj |vj | = 1. Hence there exists at least one index i
with |vi| = 1. For this index i we have

|λ| = |λvi| = |
n∑

j=1

bijvj | ≤
n∑

j=1

|bij | < 1.

Since λ was an arbitrary eigenvalue of B, we have shown that ρ(B) < 1. For those familiar
with the maximum norm, we note that the proof can be shortened to

ρ(B) ≤ ‖B‖∞ = max
i

n∑
j=1

|bij | < 1.



Exercise 4

(a) For the numerical solution of the initial value problem

y′(t) = f(t, y(t)), y(t0) = y0

we use the so-called implicit midpoint rule, which is defined as

un+1 = un + hf(
1

2
tn +

1

2
tn+1,

1

2
un +

1

2
un+1),

where u0 = y0 and tn = t0 + nh.

(i) 3 Show that application of this method to the test problem y′(t) = λ(t)y(t) leads to
the recurrence relation

un+1 =
1 + 1

2hλ(12 tn + 1
2 tn+1)

1− 1
2hλ(12 tn + 1

2 tn+1)
un.

For the function f(t, y) = λ(t)y corresponding to the test problem, the implicit midpoint
rule reads

un+1 = un + hλ(
1

2
tn +

1

2
tn+1)(

1

2
un +

1

2
un+1).

Collecting terms involving un+1 on the left we obtain[
1− 1

2
hλ(

1

2
tn +

1

2
tn+1)

]
un+1 =

[
1 +

1

2
hλ(

1

2
tn +

1

2
tn+1)

]
un,

from which the above recurrence relation immediately follows.

(ii) 4 Give the definition of ‘A-stability’ (unconditional absolute stability) and verify
whether the implicit midpoint rule is A-stable.

A method is ‘A-stable’ if its approximations satisfy

lim
n→∞

un = 0

whenever it is applied (with arbitrary step size h > 0) to the test equation

y′(t) = λy(t) (t ≥ 0),

where λ is a complex number with negative real part.
For the implicit midpoint rule, the latter test problem is a special case of the more general
test problem y′(t) = λ(t)y(t), and it follows from part (i) that its approximations satisfy the
recurrence relation

un+1 =
1 + 1

2hλ

1− 1
2hλ

un.

We see that the implicit midpoint rule is A-stable iff∣∣∣∣∣1 + 1
2z

1− 1
2z

∣∣∣∣∣ < 1 (for all z ∈ C with negative real part),

which is equivalent to

|z + 2| < |z − 2| (for all z ∈ C with negative real part).

The latter condition is indeed fulfilled since for complex numbers in the (open) left half
plane, the distance to the number −2 is smaller than to the number 2.



(b) Consider the Poisson equation on the (open) unit square Ω = (0, 1)× (0, 1),

−∂
2u

∂x2
− ∂2u

∂y2
= f(x, y), (1)

where u(x, y) = g(x, y) is given on the boundary of Ω (Dirichlet boundary conditions).

(i) 2 First show that for any smooth function v : [0, 1]→ R and x ∈ (0, 1) the quantity

v(x+ h)− 2v(x) + v(x− h)

h2
(2)

provides an approximation to v′′(x) of order 2 with respect to h.

Taylor expansion of v(x+ h) and v(x− h) yields

v(x+ h) = v(x) + hv′(x) +
1

2
h2v′′(x) +

1

6
h3v′′′(x) +O(h4)

v(x− h) = v(x)− hv′(x) +
1

2
h2v′′(x)− 1

6
h3v′′′(x) +O(h4)

Substitution of these Taylor expansions into the above difference quotient gives

h2v′′(x) +O(h4)

h2
= v′′(x) +O(h2).

(ii) 5 We choose an integer N ≥ 1, set h = 1/(N + 1) and define grid nodes (xi, yj) =
(ih, jh), i, j = 0, 1, ..., N+1. We construct approximations ui,j to u(xi, yj) by requiring
that differential equation (1) is satisfied at all internal grid nodes while replacing both
second derivatives by the second order difference quotient of type (2). This leads to
a linear system Aũ = b, where the vector ũ consists of all values ui,j at the internal
nodes. Find the matrix A and right-hand-side vector b in case N = 3.

For each internal grid node (xi, yj) the discretized differential equation reads

1

h2
[−ui−1,j + 2ui,j − ui+1,j ] +

1

h2
[−ui,j−1 + 2ui,j − ui,j+1] = fi,j ,

where fi,j = f(xi, yj). We can rewrite this into

1

h2
[−ui−1,j − ui,j−1 + 4ui,j − ui,j+1 − ui+1,j ] = fi,j .

Taking the boundary conditions into account this leads to the following linear system if
N = 3 (and therefore h = 1/4),

1

h2



4 −1 −1
−1 4 −1 −1

−1 4 −1

−1 4 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4





u1,1
u1,2
u1,3
u2,1
u2,2
u2,3
u3,1
u3,2
u3,3


=



f1,1 + h−2(g0,1 + g1,0)
f1,2 + h−2g0,2
f1,3 + h−2(g0,3 + g1,4)

f2,1 + h−2g2,0
f2,2
f2,3 + h−2g2,4
f3,1 + h−2(g3,0 + g4,1)
f3,2 + h−2g4,2
f3,3 + h−2(g4,3 + g3,4)


.

Note that the same matrix A is obtained if we make the following alternative logical choice
for the solution vector ũ and right-hand-side vector b,

ũ = (u1,1, u2,1, u3,1, u1,2, u2,2, u3,2, u1,3, u2,3, u3,3)
T ,

b = (f1,1 + ..., f2,1 + ..., f3,1 + ..., f1,2 + ..., f2,2, f3,2 + ..., f1,3 + ..., f2,3 + ..., f3,3 + ...)T .


