University of Groningen Exam Numerical Mathematics 1, June 19, 2017

Use of a simple calculator is allowed. All answers need to be motivated.
In front of each question you find a weight, which gives the number of tenths that can be gained in the final mark. The maximum total score for this exam is 5.4 points.

Exercise 1

(a) Let $n+1$ points $\left(x_{i}, y_{i}\right), i=0,1, \ldots, n$, be given with distinct nodes x_{i}. A polynomial P is called interpolating if $P\left(x_{i}\right)=y_{i}, i=0,1, \ldots, n$.
(i) 4 Give a complete description of the Lagrange interpolation formula, and explain why this formula provides an interpolating polynomial P of degree $\leq n$.
The Lagrange interpolation formula reads

$$
P(x)=\sum_{k=0}^{n} y_{k} \varphi_{k}(x),
$$

where the functions φ_{k} are the Lagrange characteristic polynomials defined as

$$
\varphi_{k}(x)=\prod_{\substack{j=0 \\ j \neq k}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} .
$$

One easily verifies that the Lagrange characteristic polynomials φ_{k} have degree n and satisfy $\varphi_{k}\left(x_{j}\right)=\delta_{j k}$. It follows that P is a polynomial of degree $\leq n$ satisfying

$$
P\left(x_{j}\right)=\sum_{k=0}^{n} y_{k} \varphi_{k}\left(x_{j}\right)=\sum_{k=0}^{n} y_{k} \delta_{j k}=y_{j} \quad(j k=0,1, \ldots, n) .
$$

(ii) 2 Show that there cannot exist another interpolating polynomial P of degree $\leq n$.

If P and Q are two interpolating polynomials of degree $\leq n$, their difference $R=P-Q$ satisfies $R\left(x_{j}\right)=0$ for all $j=0,1, \ldots, n$. But then R is a polynomial of degree $\leq n$ with at least $n+1$ zeros. This is only possible if R is the zero function, proving that $P=Q$.
(iii) 4 Suppose that all the nodes x_{i} lie in an interval $I=[a, b]$, and that we are interested in evaluating the interpolant P at arbitrary $x \in I$. How is the corresponding Lebesgue constant Λ defined, and what are the implications if its value is large (say, $\Lambda=10^{5}$)?
The Lebesgue constant Λ is defined as

$$
\Lambda=\max _{x \in I} \sum_{k=0}^{n}\left|\varphi_{k}(x)\right| .
$$

For a given set of nodes and interval I, it is the smallest possible constant in the stability bound that estimates the effect of perturbations of the values y_{i} on the interpolated value $P(x)$,

$$
|\tilde{P}(x)-P(x)| \leq \Lambda \cdot \max _{i}\left|\tilde{y}_{i}-y_{i}\right| \quad \text { for all } x \in I .
$$

It can therefore be regarded as the condition number of the interpolation problem. If the value of Λ is large, it follows that small perturbations in the values y_{i} can have a large effect on the interpolated value $P(x)$ for some $x \in I$.
(b) For a smooth function f on the interval $[0,1]$ we approximate its (one-sided) derivative $f^{\prime}(0)$ by $P^{\prime}(0)$, where P is the polynomial (of degree ≤ 2) that interpolates f at the nodes $x_{0}=0, x_{1}=h$ and $x_{2}=2 h$.
(i) 1 Show that P is given by

$$
P(x)=\frac{f(0)}{2 h^{2}}(x-h)(x-2 h)-\frac{f(h)}{h^{2}} x(x-2 h)+\frac{f(2 h)}{2 h^{2}} x(x-h) .
$$

This follows immediately from the Lagrange interpolation formula since for the given nodes the Lagrange characteristic polynomials are

$$
\begin{aligned}
\varphi_{0}(x) & =\frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}}=\frac{x-h}{0-h} \cdot \frac{x-2 h}{0-2 h}=\frac{(x-h)(x-2 h)}{2 h^{2}} \\
\varphi_{1}(x) & =\frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}}=\frac{x-0}{h-0} \cdot \frac{x-2 h}{h-2 h}=\frac{x(x-2 h)}{-h^{2}} \\
\varphi_{2}(x) & =\frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{x-0}{2 h-0} \cdot \frac{x-h}{2 h-h}=\frac{x(x-h)}{2 h^{2}}
\end{aligned}
$$

(ii) 1 Use the above explicit expression for $P(x)$ to show that

$$
P^{\prime}(0)=\frac{1}{2 h}[-3 f(0)+4 f(h)-f(2 h)] .
$$

We have

$$
\varphi_{0}^{\prime}(x)=\frac{2 x-3 h}{2 h^{2}}, \quad \varphi_{1}^{\prime}(x)=\frac{2 x-2 h}{-h^{2}}, \quad \varphi_{2}^{\prime}(x)=\frac{2 x-h}{2 h^{2}}
$$

implying

$$
\varphi_{0}^{\prime}(0)=\frac{-3}{2 h}, \quad \varphi_{1}^{\prime}(0)=\frac{2}{h}, \quad \varphi_{2}^{\prime}(0)=\frac{-1}{2 h} .
$$

The expression for $P^{\prime}(0)$ immediately follows from

$$
P^{\prime}(0)=f(0) \varphi_{0}^{\prime}(0)+f(h) \varphi_{1}^{\prime}(0)+f(2 h) \varphi_{2}^{\prime}(0)
$$

(iii) 3 Show that $P^{\prime}(0)$ is a second order approximation of $f^{\prime}(0)$ (with respect to h).

Taylor expansion of $4 f(h)$ and $f(2 h)$ yields

$$
\begin{aligned}
& 4 f(h)=4 f(0)+4 h f^{\prime}(0)+2 h^{2} f^{\prime \prime}(0)+\mathcal{O}\left(h^{3}\right) \\
& f(2 h)=f(0)+2 h f^{\prime}(0)+2 h^{2} f^{\prime \prime}(0)+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

Substitution of these Taylor expansions into the expression for $P^{\prime}(0)$ shows that

$$
P^{\prime}(0)=\frac{2 h f^{\prime}(0)+\mathcal{O}\left(h^{3}\right)}{2 h}=f^{\prime}(0)+\mathcal{O}\left(h^{2}\right)
$$

Exercise 2

(a) Consider a system of nonlinear equations $f(x)=0$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth.
(i) 4 Derive Newton's method for the above system, and explain briefly how this method works.
Newton's method is based on a linearization (first order Taylor expansion) of f about the last iterate $x^{(k)}$,

$$
f(x) \approx f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x-x^{(k)}\right),
$$

where $f^{\prime}\left(x^{(k)}\right)$ is the Jacobian matrix of f with entries $\frac{\partial f_{i}}{\partial x_{j}}$ evaluated at $x=x^{(k)}$. The next iterate $x^{(k+1)}$ is defined as the vector x for which the linearization is zero, i.e.,

$$
f\left(x^{(k)}\right)+f^{\prime}\left(x^{(k)}\right)\left(x^{(k+1)}-x^{(k)}\right)=0 .
$$

In each iteration step, the method therefore requires solving the system of linear equations

$$
f^{\prime}\left(x^{(k)}\right) \delta^{(k)}=-f\left(x^{(k)}\right),
$$

followed by setting $x^{(k+1)}=x^{(k)}+\delta^{(k)}$.
(ii) 3 Consider the above system with $n=2$ and

$$
f_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}^{2}+\sin \left(x_{1} x_{2}\right)-3, \quad f_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}+\cos \left(x_{1} x_{2}\right)-4 .
$$

Starting from the initial guess $x^{(0)}=(\pi, 0)^{T}$, show that Newton's method converges to the root $\alpha=(3,0)^{T}$ in a single step.
The Jacobian matrix is given by

$$
f^{\prime}(x)=\left[\begin{array}{cc}
1+x_{2} \cos \left(x_{1} x_{2}\right) & 2 x_{2}+x_{1} \cos \left(x_{1} x_{2}\right) \\
1-x_{2} \sin \left(x_{1} x_{2}\right) & 1-x_{1} \sin \left(x_{1} x_{2}\right)
\end{array}\right]
$$

For the first Newton step, starting from $x^{(0)}=(\pi, 0)^{T}$, the linear system $f^{\prime}\left(x^{(0)}\right) \delta^{(0)}=$ $-f\left(x^{(0)}\right)$ has the form

$$
\left[\begin{array}{cc}
1 & \pi \\
1 & 1
\end{array}\right] \cdot \delta^{(0)}=\left[\begin{array}{c}
-(\pi-3) \\
-(\pi-3)
\end{array}\right],
$$

which has the solution

$$
\delta^{(0)}=\left[\begin{array}{c}
3-\pi \\
0
\end{array}\right],
$$

so that

$$
x^{(1)}=x^{(0)}+\delta^{(0)}=\left[\begin{array}{l}
\pi \\
0
\end{array}\right]+\left[\begin{array}{c}
3-\pi \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] .
$$

Note that $\alpha=(3,0)^{T}$ is indeed a root of $f(x)=0$.
(b) Consider the fixed point iteration $x^{(k+1)}=\phi\left(x^{(k)}\right)$ with $x^{(0)}$ given and $\phi(x)=\frac{1}{3} x\left(4+x-2 x^{2}\right)$.
(i) 1 Determine all fixed points α of ϕ.

We have

$$
\begin{aligned}
& \phi(x)=x \Longleftrightarrow \\
& \frac{1}{3} x\left(4+x-2 x^{2}\right)=x \Longleftrightarrow \\
& x=0 \vee 4+x-2 x^{2}=3 \Longleftrightarrow \\
& x=0 \vee 1+x-2 x^{2}=0 \Longleftrightarrow \\
& x=0 \vee(1-x)(1+2 x)=0 \Longleftrightarrow \\
& x=0 \vee x=1 \vee x=-1 / 2 .
\end{aligned}
$$

The fixed points are therefore $\alpha=0, \alpha=1$ and $\alpha=-1 / 2$.
(ii) 4 For each of these fixed points α, check whether $\left\{x^{(k)}\right\}$ converges to α if $x^{(0)}$ is chosen sufficiently close to α. If that occurs, also determine the order of convergence.
Note that

$$
\phi^{\prime}(x)=\frac{1}{3}\left(4+x-2 x^{2}\right)+\frac{1}{3} x(1-4 x)=\frac{1}{3}\left(4+2 x-6 x^{2}\right) .
$$

We conclude that

- $\alpha=0$: no convergence since $\left|\phi^{\prime}(0)\right|=\frac{4}{3}>1$
- $\alpha=1$: convergence of order at least 2 since $\phi^{\prime}(1)=0$; the order is exactly 2 since $\phi^{\prime \prime}(1)=-10 / 3 \neq 0$
- $\alpha=-1 / 2$: convergence of order 1 since $\phi^{\prime}(-1 / 2)=1 / 2 \in(0,1)$

Exercise 3

(a) Consider the system of linear equations $A x=b$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
6 \\
9 \\
10
\end{array}\right]
$$

(i) 4 Determine the Cholesky factorization and $L U$ factorization of A.

The Cholesky factorization $A=R^{T} R$ and LU factorization $A=L U$ are the same in this case, namely

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(ii) 3 Use one of these factorizations to solve $A x=b$.

We solve $A x=b$ by first solving $L y=b$ for y and then solving $R x=y$ for x.
Solving $L y=b$ with the forward substitution method we find

$$
y=\left[\begin{array}{l}
6 \\
3 \\
1
\end{array}\right]
$$

Subsequently solving $R x=y$ with the backward substitution method we find

$$
x=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

(b) For solving a general linear system $A x=b$ we consider iterative methods of the form

$$
P x^{(k+1)}=(P-A) x^{(k)}+b
$$

where P is a nonsingular preconditioner of A.
(i) 1 Determine the iteration matrix B and show that the error $e^{(k)}=x^{(k)}-x$ satisfies $e^{(k+1)}=B e^{(k)}$. When does the method converge?
The iteration method can be rewritten as

$$
\begin{equation*}
x^{(k+1)}=P^{-1}(P-A) x^{(k)}+P^{-1} b=B x^{(k)}+P^{-1} b \tag{1}
\end{equation*}
$$

where the iteration matrix is given by

$$
B=P^{-1}(P-A)=I-P^{-1} A
$$

Note that the solution x of $A x=b$ obviously satisfies $P x=(P-A) x+b$, so we also have

$$
x=B x+P^{-1} b
$$

Subtracting the latter relation from (1) we see that

$$
e^{(k+1)}=B e^{(k)}
$$

The method converges if the spectral radius $\rho(B)$ satisfies $\rho(B)<1$.
(ii) 5 What is the name of the iterative method that corresponds to the preconditioner $P=D=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)$? Show that this method converges if A is strictly diagonally dominant by row.
This is Jacobi's method. To show that it converges under the mentioned condition we write $A=D+N$, where N is the non-diagonal part of A. The iteration matrix is given by

$$
B=-D^{-1} N=\left[\begin{array}{cccc}
0 & -a_{12} / a_{11} & \ldots & -a_{1 n} / a_{11} \\
-a_{21} / a_{22} & 0 & & -a_{2 n} / a_{22} \\
\vdots & & \ddots & \vdots \\
-a_{n 1} / a_{n n} & -a_{n 2} / a_{n n} & \cdots & 0
\end{array}\right]
$$

In the following we will show that $\rho(B)<1$. It follows from the strict diagonal dominance of A that the matrix B satisfies

$$
\sum_{j=1}^{n}\left|b_{i j}\right|<1 \quad(\text { for all } i=1,2, \ldots, n)
$$

Let λ be an arbitrary eigenvalue of B and v a corresponding eigenvector. Then we have

$$
\sum_{j=1}^{n} b_{i j} v_{j}=\lambda v_{i} \quad(\text { for all } i=1,2, \ldots, n)
$$

We scale this eigenvector such that $\max _{j}\left|v_{j}\right|=1$. Hence there exists at least one index i with $\left|v_{i}\right|=1$. For this index i we have

$$
|\lambda|=\left|\lambda v_{i}\right|=\left|\sum_{j=1}^{n} b_{i j} v_{j}\right| \leq \sum_{j=1}^{n}\left|b_{i j}\right|<1
$$

Since λ was an arbitrary eigenvalue of B, we have shown that $\rho(B)<1$. For those familiar with the maximum norm, we note that the proof can be shortened to

$$
\rho(B) \leq\|B\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|b_{i j}\right|<1
$$

Exercise 4

(a) For the numerical solution of the initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

we use the so-called implicit midpoint rule, which is defined as

$$
u_{n+1}=u_{n}+h f\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}, \frac{1}{2} u_{n}+\frac{1}{2} u_{n+1}\right),
$$

where $u_{0}=y_{0}$ and $t_{n}=t_{0}+n h$.
(i) 3 Show that application of this method to the test problem $y^{\prime}(t)=\lambda(t) y(t)$ leads to the recurrence relation

$$
u_{n+1}=\frac{1+\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)}{1-\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)} u_{n} .
$$

For the function $f(t, y)=\lambda(t) y$ corresponding to the test problem, the implicit midpoint rule reads

$$
u_{n+1}=u_{n}+h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)\left(\frac{1}{2} u_{n}+\frac{1}{2} u_{n+1}\right) .
$$

Collecting terms involving u_{n+1} on the left we obtain

$$
\left[1-\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)\right] u_{n+1}=\left[1+\frac{1}{2} h \lambda\left(\frac{1}{2} t_{n}+\frac{1}{2} t_{n+1}\right)\right] u_{n},
$$

from which the above recurrence relation immediately follows.
(ii) 4 Give the definition of 'A-stability' (unconditional absolute stability) and verify whether the implicit midpoint rule is A -stable.
A method is 'A-stable' if its approximations satisfy

$$
\lim _{n \rightarrow \infty} u_{n}=0
$$

whenever it is applied (with arbitrary step size $h>0$) to the test equation

$$
y^{\prime}(t)=\lambda y(t) \quad(t \geq 0),
$$

where λ is a complex number with negative real part.
For the implicit midpoint rule, the latter test problem is a special case of the more general test problem $y^{\prime}(t)=\lambda(t) y(t)$, and it follows from part (i) that its approximations satisfy the recurrence relation

$$
u_{n+1}=\frac{1+\frac{1}{2} h \lambda}{1-\frac{1}{2} h \lambda} u_{n} .
$$

We see that the implicit midpoint rule is A-stable iff

$$
\left|\frac{1+\frac{1}{2} z}{1-\frac{1}{2} z}\right|<1 \quad \text { (for all } z \in \mathbb{C} \text { with negative real part), }
$$

which is equivalent to

$$
|z+2|<|z-2| \quad \text { (for all } z \in \mathbb{C} \text { with negative real part). }
$$

The latter condition is indeed fulfilled since for complex numbers in the (open) left half plane, the distance to the number -2 is smaller than to ne number 2 .
(b) Consider the Poisson equation on the (open) unit square $\Omega=(0,1) \times(0,1)$,

$$
\begin{equation*}
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y), \tag{1}
\end{equation*}
$$

where $u(x, y)=g(x, y)$ is given on the boundary of Ω (Dirichlet boundary conditions).
(i) 2 First show that for any smooth function $v:[0,1] \rightarrow \mathbb{R}$ and $x \in(0,1)$ the quantity

$$
\begin{equation*}
\frac{v(x+h)-2 v(x)+v(x-h)}{h^{2}} \tag{2}
\end{equation*}
$$

provides an approximation to $v^{\prime \prime}(x)$ of order 2 with respect to h.
Taylor expansion of $v(x+h)$ and $v(x-h)$ yields

$$
\begin{aligned}
& v(x+h)=v(x)+h v^{\prime}(x)+\frac{1}{2} h^{2} v^{\prime \prime}(x)+\frac{1}{6} h^{3} v^{\prime \prime \prime}(x)+\mathcal{O}\left(h^{4}\right) \\
& v(x-h)=v(x)-h v^{\prime}(x)+\frac{1}{2} h^{2} v^{\prime \prime}(x)-\frac{1}{6} h^{3} v^{\prime \prime \prime}(x)+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Substitution of these Taylor expansions into the above difference quotient gives

$$
\frac{h^{2} v^{\prime \prime}(x)+\mathcal{O}\left(h^{4}\right)}{h^{2}}=v^{\prime \prime}(x)+\mathcal{O}\left(h^{2}\right) .
$$

(ii) 5 We choose an integer $N \geq 1$, set $h=1 /(N+1)$ and define grid nodes $\left(x_{i}, y_{j}\right)=$ (ih, jh), $i, j=0,1, \ldots, N+1$. We construct approximations $u_{i, j}$ to $u\left(x_{i}, y_{j}\right)$ by requiring that differential equation (1) is satisfied at all internal grid nodes while replacing both second derivatives by the second order difference quotient of type (2). This leads to a linear system $A \tilde{u}=b$, where the vector \tilde{u} consists of all values $u_{i, j}$ at the internal nodes. Find the matrix A and right-hand-side vector b in case $N=3$.
For each internal grid node (x_{i}, y_{j}) the discretized differential equation reads

$$
\frac{1}{h^{2}}\left[-u_{i-1, j}+2 u_{i, j}-u_{i+1, j}\right]+\frac{1}{h^{2}}\left[-u_{i, j-1}+2 u_{i, j}-u_{i, j+1}\right]=f_{i, j},
$$

where $f_{i, j}=f\left(x_{i}, y_{j}\right)$. We can rewrite this into

$$
\frac{1}{h^{2}}\left[-u_{i-1, j}-u_{i, j-1}+4 u_{i, j}-u_{i, j+1}-u_{i+1, j}\right]=f_{i, j} .
$$

Taking the boundary conditions into account this leads to the following linear system if $N=3$ (and therefore $h=1 / 4$),

Note that the same matrix A is obtained if we make the following alternative logical choice for the solution vector \tilde{u} and right-hand-side vector b,

$$
\begin{aligned}
\tilde{u} & =\left(u_{1,1}, u_{2,1}, u_{3,1}, u_{1,2}, u_{2,2}, u_{3,2}, u_{1,3}, u_{2,3}, u_{3,3}\right)^{T} \\
b & =\left(f_{1,1}+\ldots, f_{2,1}+\ldots, f_{3,1}+\ldots, f_{1,2}+\ldots, f_{2,2}, f_{3,2}+\ldots, f_{1,3}+\ldots, f_{2,3}+\ldots, f_{3,3}+\ldots\right)^{T} .
\end{aligned}
$$

