University of Groningen Exam Numerical Mathematics 1, June 19, 2017

Use of a simple calculator is allowed. All answers need to be motivated.

In front of each question you find a weight, which gives the number of tenths that can be gained in the final mark. The maximum total score for this exam is 5.4 points.

Exercise 1

- (a) Let n + 1 points (x_i, y_i) , i = 0, 1, ..., n, be given with distinct nodes x_i . A polynomial P is called interpolating if $P(x_i) = y_i$, i = 0, 1, ..., n.
 - (i) 4 Give a complete description of the Lagrange interpolation formula, and explain why this formula provides an interpolating polynomial P of degree $\leq n$. The Lagrange interpolation formula reads

 $P(x) = \sum_{k=0}^{n} y_k \varphi_k(x),$

where the functions φ_k are the Lagrange characteristic polynomials defined as

$$\varphi_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - x_j}{x_k - x_j}$$

One easily verifies that the Lagrange characteristic polynomials φ_k have degree n and satisfy $\varphi_k(x_j) = \delta_{jk}$. It follows that P is a polynomial of degree $\leq n$ satisfying

$$P(x_j) = \sum_{k=0}^n y_k \varphi_k(x_j) = \sum_{k=0}^n y_k \delta_{jk} = y_j \quad (jk = 0, 1, ..., n).$$

- (ii) 2 Show that there cannot exist another interpolating polynomial P of degree $\leq n$. If P and Q are two interpolating polynomials of degree $\leq n$, their difference R = P - Q satisfies $R(x_j) = 0$ for all j = 0, 1, ..., n. But then R is a polynomial of degree $\leq n$ with at least n + 1 zeros. This is only possible if R is the zero function, proving that P = Q.
- (iii) 4 Suppose that all the nodes x_i lie in an interval I = [a, b], and that we are interested in evaluating the interpolant P at arbitrary $x \in I$. How is the corresponding Lebesgue constant Λ defined, and what are the implications if its value is large (say, $\Lambda = 10^5$)? The Lebesgue constant Λ is defined as

$$\Lambda = \max_{x \in I} \sum_{k=0}^{n} |\varphi_k(x)|.$$

For a given set of nodes and interval I, it is the smallest possible constant in the stability bound that estimates the effect of perturbations of the values y_i on the interpolated value P(x),

$$|\tilde{P}(x) - P(x)| \le \Lambda \cdot \max_{i} |\tilde{y}_{i} - y_{i}|$$
 for all $x \in I$.

It can therefore be regarded as the condition number of the interpolation problem. If the value of Λ is large, it follows that small perturbations in the values y_i can have a large effect on the interpolated value P(x) for some $x \in I$.

- (b) For a smooth function f on the interval [0,1] we approximate its (one-sided) derivative f'(0) by P'(0), where P is the polynomial (of degree ≤ 2) that interpolates f at the nodes $x_0 = 0, x_1 = h$ and $x_2 = 2h$.
 - (i) $\boxed{1}$ Show that *P* is given by

$$P(x) = \frac{f(0)}{2h^2}(x-h)(x-2h) - \frac{f(h)}{h^2}x(x-2h) + \frac{f(2h)}{2h^2}x(x-h)$$

This follows immediately from the Lagrange interpolation formula since for the given nodes the Lagrange characteristic polynomials are

$$\varphi_0(x) = \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = \frac{x - h}{0 - h} \cdot \frac{x - 2h}{0 - 2h} = \frac{(x - h)(x - 2h)}{2h^2}$$
$$\varphi_1(x) = \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = \frac{x - 0}{h - 0} \cdot \frac{x - 2h}{h - 2h} = \frac{x(x - 2h)}{-h^2}$$
$$\varphi_2(x) = \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = \frac{x - 0}{2h - 0} \cdot \frac{x - h}{2h - h} = \frac{x(x - h)}{2h^2}$$

(ii) 1 Use the above explicit expression for P(x) to show that

$$P'(0) = \frac{1}{2h} \left[-3f(0) + 4f(h) - f(2h) \right]$$

We have

$$\varphi_0'(x) = \frac{2x - 3h}{2h^2}, \quad \varphi_1'(x) = \frac{2x - 2h}{-h^2}, \quad \varphi_2'(x) = \frac{2x - h}{2h^2}$$

implying

$$\varphi_0'(0) = \frac{-3}{2h}, \quad \varphi_1'(0) = \frac{2}{h}, \quad \varphi_2'(0) = \frac{-1}{2h}.$$

The expression for P'(0) immediately follows from

$$P'(0) = f(0)\varphi'_0(0) + f(h)\varphi'_1(0) + f(2h)\varphi'_2(0)$$

(iii) 3 Show that P'(0) is a second order approximation of f'(0) (with respect to h). Taylor expansion of 4f(h) and f(2h) yields

$$\begin{split} &4f(h) = 4f(0) + 4hf'(0) + 2h^2 f''(0) + \mathcal{O}(h^3) \\ &f(2h) = f(0) + 2hf'(0) + 2h^2 f''(0) + \mathcal{O}(h^3) \end{split}$$

Substitution of these Taylor expansions into the expression for P'(0) shows that

$$P'(0) = \frac{2hf'(0) + \mathcal{O}(h^3)}{2h} = f'(0) + \mathcal{O}(h^2).$$

Exercise 2

- (a) Consider a system of nonlinear equations f(x) = 0, where $f : \mathbb{R}^n \to \mathbb{R}^n$ is smooth.
 - (i) 4 Derive Newton's method for the above system, and explain briefly how this method works.

Newton's method is based on a linearization (first order Taylor expansion) of f about the last iterate $x^{(k)}$,

$$f(x) \approx f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$$

where $f'(x^{(k)})$ is the Jacobian matrix of f with entries $\frac{\partial f_i}{\partial x_j}$ evaluated at $x = x^{(k)}$. The next iterate $x^{(k+1)}$ is defined as the vector x for which the linearization is zero, i.e.,

$$f(x^{(k)}) + f'(x^{(k)})(x^{(k+1)} - x^{(k)}) = 0.$$

In each iteration step, the method therefore requires solving the system of linear equations

$$f'(x^{(k)})\delta^{(k)} = -f(x^{(k)}),$$

followed by setting $x^{(k+1)} = x^{(k)} + \delta^{(k)}$.

(ii) 3 Consider the above system with n = 2 and

$$f_1(x_1, x_2) = x_1 + x_2^2 + \sin(x_1 x_2) - 3, \quad f_2(x_1, x_2) = x_1 + x_2 + \cos(x_1 x_2) - 4.$$

Starting from the initial guess $x^{(0)} = (\pi, 0)^T$, show that Newton's method converges to the root $\alpha = (3, 0)^T$ in a single step.

The Jacobian matrix is given by

$$f'(x) = \begin{bmatrix} 1 + x_2 \cos(x_1 x_2) & 2x_2 + x_1 \cos(x_1 x_2) \\ 1 - x_2 \sin(x_1 x_2) & 1 - x_1 \sin(x_1 x_2) \end{bmatrix}$$

For the first Newton step, starting from $x^{(0)} = (\pi, 0)^T$, the linear system $f'(x^{(0)})\delta^{(0)} = -f(x^{(0)})$ has the form

$$\begin{bmatrix} 1 & \pi \\ 1 & 1 \end{bmatrix} \cdot \delta^{(0)} = \begin{bmatrix} -(\pi - 3) \\ -(\pi - 3) \end{bmatrix},$$

which has the solution

$$\delta^{(0)} = \left[\begin{array}{c} 3 - \pi \\ 0 \end{array} \right],$$

so that

$$x^{(1)} = x^{(0)} + \delta^{(0)} = \begin{bmatrix} \pi \\ 0 \end{bmatrix} + \begin{bmatrix} 3 - \pi \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Note that $\alpha = (3,0)^T$ is indeed a root of f(x) = 0.

- (b) Consider the fixed point iteration $x^{(k+1)} = \phi(x^{(k)})$ with $x^{(0)}$ given and $\phi(x) = \frac{1}{3}x(4+x-2x^2)$.
 - (i) 1 Determine all fixed points α of ϕ .

We have

 $\phi(x) = x \iff$ $\frac{1}{3}x(4+x-2x^2) = x \iff$ $x = 0 \lor 4+x-2x^2 = 3 \iff$ $x = 0 \lor 1+x-2x^2 = 0 \iff$ $x = 0 \lor (1-x)(1+2x) = 0 \iff$ $x = 0 \lor x = 1 \lor x = -1/2.$

The fixed points are therefore $\alpha = 0$, $\alpha = 1$ and $\alpha = -1/2$.

(ii) 4 For each of these fixed points α , check whether $\{x^{(k)}\}$ converges to α if $x^{(0)}$ is chosen sufficiently close to α . If that occurs, also determine the order of convergence. Note that

$$\phi'(x) = \frac{1}{3}(4 + x - 2x^2) + \frac{1}{3}x(1 - 4x) = \frac{1}{3}(4 + 2x - 6x^2).$$

We conclude that

- $\alpha = 0$: no convergence since $|\phi'(0)| = \frac{4}{3} > 1$
- $\alpha = 1$: convergence of order at least 2 since $\phi'(1) = 0$; the order is exactly 2 since $\phi''(1) = -10/3 \neq 0$
- $\alpha = -1/2$: convergence of order 1 since $\phi'(-1/2) = 1/2 \in (0,1)$

Exercise 3

(a) Consider the system of linear equations Ax = b, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 6 \\ 9 \\ 10 \end{bmatrix}.$$

(i) 4 Determine the Cholesky factorization and LU factorization of A.

The Cholesky factorization $A = R^T R$ and LU factorization A = LU are the same in this case, namely

[1	1	1		[1]	0	0	[1	1	1	
1	2	2	=	1	1	0	0	1	1	
[1	2	3 _		1	1	1	0	0	1 .	

(ii) |3| Use one of these factorizations to solve Ax = b.

We solve Ax = b by first solving Ly = b for y and then solving Rx = y for x. Solving Ly = b with the forward substitution method we find

$$y = \begin{bmatrix} 6\\3\\1 \end{bmatrix}.$$

Subsequently solving Rx = y with the backward substitution method we find

$$x = \begin{bmatrix} 3\\2\\1 \end{bmatrix}.$$

(b) For solving a general linear system Ax = b we consider iterative methods of the form

$$Px^{(k+1)} = (P - A)x^{(k)} + b,$$

where P is a nonsingular preconditioner of A.

(i) $\lfloor 1 \rfloor$ Determine the iteration matrix B and show that the error $e^{(k)} = x^{(k)} - x$ satisfies $e^{(k+1)} = Be^{(k)}$. When does the method converge?

The iteration method can be rewritten as

$$x^{(k+1)} = P^{-1}(P-A)x^{(k)} + P^{-1}b = Bx^{(k)} + P^{-1}b,$$
(1)

where the iteration matrix is given by

$$B = P^{-1}(P - A) = I - P^{-1}A.$$

Note that the solution x of Ax = b obviously satisfies Px = (P - A)x + b, so we also have

$$x = Bx + P^{-1}b.$$

Subtracting the latter relation from (1) we see that

$$e^{(k+1)} = Be^{(k)}$$

The method converges if the spectral radius $\rho(B)$ satisfies $\rho(B) < 1$.

(ii) $\lfloor 5 \rfloor$ What is the name of the iterative method that corresponds to the preconditioner $P = D = \text{diag}(a_{11}, a_{22}, ..., a_{nn})$? Show that this method converges if A is strictly diagonally dominant by row.

This is Jacobi's method. To show that it converges under the mentioned condition we write A = D + N, where N is the non-diagonal part of A. The iteration matrix is given by

$$B = -D^{-1}N = \begin{bmatrix} 0 & -a_{12}/a_{11} & \dots & -a_{1n}/a_{11} \\ -a_{21}/a_{22} & 0 & -a_{2n}/a_{22} \\ \vdots & \ddots & \vdots \\ -a_{n1}/a_{nn} & -a_{n2}/a_{nn} & \dots & 0 \end{bmatrix}$$

In the following we will show that $\rho(B) < 1$. It follows from the strict diagonal dominance of A that the matrix B satisfies

$$\sum_{j=1}^{n} |b_{ij}| < 1 \quad \text{(for all } i = 1, 2, ..., n\text{)}.$$

Let λ be an arbitrary eigenvalue of B and v a corresponding eigenvector. Then we have

$$\sum_{j=1}^{n} b_{ij} v_j = \lambda v_i \quad \text{(for all } i = 1, 2, ..., n\text{)}.$$

We scale this eigenvector such that $\max_j |v_j| = 1$. Hence there exists at least one index *i* with $|v_i| = 1$. For this index *i* we have

$$|\lambda| = |\lambda v_i| = |\sum_{j=1}^n b_{ij} v_j| \le \sum_{j=1}^n |b_{ij}| < 1.$$

Since λ was an arbitrary eigenvalue of B, we have shown that $\rho(B) < 1$. For those familiar with the maximum norm, we note that the proof can be shortened to

$$\rho(B) \le ||B||_{\infty} = \max_{i} \sum_{j=1}^{n} |b_{ij}| < 1.$$

Exercise 4

(a) For the numerical solution of the initial value problem

$$y'(t) = f(t, y(t)), \quad y(t_0) = y_0$$

we use the so-called *implicit midpoint rule*, which is defined as

$$u_{n+1} = u_n + hf(\frac{1}{2}t_n + \frac{1}{2}t_{n+1}, \frac{1}{2}u_n + \frac{1}{2}u_{n+1}),$$

where $u_0 = y_0$ and $t_n = t_0 + nh$.

(i) 3 Show that application of this method to the test problem $y'(t) = \lambda(t)y(t)$ leads to the recurrence relation

$$u_{n+1} = \frac{1 + \frac{1}{2}h\lambda(\frac{1}{2}t_n + \frac{1}{2}t_{n+1})}{1 - \frac{1}{2}h\lambda(\frac{1}{2}t_n + \frac{1}{2}t_{n+1})}u_n.$$

For the function $f(t, y) = \lambda(t)y$ corresponding to the test problem, the implicit midpoint rule reads

$$u_{n+1} = u_n + h\lambda(\frac{1}{2}t_n + \frac{1}{2}t_{n+1})(\frac{1}{2}u_n + \frac{1}{2}u_{n+1}).$$

Collecting terms involving u_{n+1} on the left we obtain

$$\left[1 - \frac{1}{2}h\lambda(\frac{1}{2}t_n + \frac{1}{2}t_{n+1})\right]u_{n+1} = \left[1 + \frac{1}{2}h\lambda(\frac{1}{2}t_n + \frac{1}{2}t_{n+1})\right]u_n,$$

from which the above recurrence relation immediately follows.

(ii) 4 Give the definition of 'A-stability' (unconditional absolute stability) and verify whether the implicit midpoint rule is A-stable.

A method is 'A-stable' if its approximations satisfy

$$\lim_{n \to \infty} u_n = 0$$

whenever it is applied (with arbitrary step size h > 0) to the test equation

$$y'(t) = \lambda y(t) \quad (t \ge 0),$$

where λ is a complex number with negative real part. For the implicit midpoint rule, the latter test problem is a special case of the more general test problem $y'(t) = \lambda(t)y(t)$, and it follows from part (i) that its approximations satisfy the recurrence relation

$$u_{n+1} = \frac{1 + \frac{1}{2}h\lambda}{1 - \frac{1}{2}h\lambda}u_n.$$

We see that the implicit midpoint rule is A-stable iff

$$\left|\frac{1+\frac{1}{2}z}{1-\frac{1}{2}z}\right| < 1 \quad \text{(for all } z \in \mathbb{C} \text{ with negative real part)},$$

which is equivalent to

$$|z+2| < |z-2|$$
 (for all $z \in \mathbb{C}$ with negative real part).

The latter condition is indeed fulfilled since for complex numbers in the (open) left half plane, the distance to the number -2 is smaller than to the number 2.

(b) Consider the Poisson equation on the (open) unit square $\Omega = (0, 1) \times (0, 1)$,

$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f(x, y), \tag{1}$$

where u(x, y) = g(x, y) is given on the boundary of Ω (Dirichlet boundary conditions).

(i) 2 First show that for any smooth function $v: [0,1] \to \mathbb{R}$ and $x \in (0,1)$ the quantity

$$\frac{v(x+h) - 2v(x) + v(x-h)}{h^2}$$
(2)

provides an approximation to v''(x) of order 2 with respect to h.

Taylor expansion of v(x+h) and v(x-h) yields

$$v(x+h) = v(x) + hv'(x) + \frac{1}{2}h^2v''(x) + \frac{1}{6}h^3v'''(x) + \mathcal{O}(h^4)$$

$$v(x-h) = v(x) - hv'(x) + \frac{1}{2}h^2v''(x) - \frac{1}{6}h^3v'''(x) + \mathcal{O}(h^4)$$

Substitution of these Taylor expansions into the above difference quotient gives

$$\frac{h^2 v''(x) + \mathcal{O}(h^4)}{h^2} = v''(x) + \mathcal{O}(h^2).$$

(ii) 5 We choose an integer $N \ge 1$, set h = 1/(N+1) and define grid nodes $(x_i, y_j) = (ih, jh), i, j = 0, 1, ..., N+1$. We construct approximations $u_{i,j}$ to $u(x_i, y_j)$ by requiring that differential equation (1) is satisfied at all internal grid nodes while replacing both second derivatives by the second order difference quotient of type (2). This leads to a linear system $A\tilde{u} = b$, where the vector \tilde{u} consists of all values $u_{i,j}$ at the internal nodes. Find the matrix A and right-hand-side vector b in case N = 3.

For each internal grid node (x_i, y_j) the discretized differential equation reads

$$\frac{1}{h^2} \left[-u_{i-1,j} + 2u_{i,j} - u_{i+1,j} \right] + \frac{1}{h^2} \left[-u_{i,j-1} + 2u_{i,j} - u_{i,j+1} \right] = f_{i,j},$$

where $f_{i,j} = f(x_i, y_j)$. We can rewrite this into

$$\frac{1}{h^2} \left[-u_{i-1,j} - u_{i,j-1} + 4u_{i,j} - u_{i,j+1} - u_{i+1,j} \right] = f_{i,j}.$$

Taking the boundary conditions into account this leads to the following linear system if N = 3 (and therefore h = 1/4),

Note that the same matrix A is obtained if we make the following alternative logical choice for the solution vector \tilde{u} and right-hand-side vector b,

$$\tilde{u} = (u_{1,1}, u_{2,1}, u_{3,1}, u_{1,2}, u_{2,2}, u_{3,2}, u_{1,3}, u_{2,3}, u_{3,3})^T,$$

$$b = (f_{1,1} + \dots, f_{2,1} + \dots, f_{3,1} + \dots, f_{1,2} + \dots, f_{2,2}, f_{3,2} + \dots, f_{1,3} + \dots, f_{2,3} + \dots, f_{3,3} + \dots)^T.$$